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Chemical applications of topology and group theory.
17. An information theoretical approach to polyhedral
symmetry [1]
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Information theoretic parameters are described which measure the asymmetry
of polyhedra based on partitions of their vertices, faces, and edges into orbits
under action of their symmetry point groups. Such asymmetry parameters are
all zero only for the five regular polyhedra and are all unity for polyhedra
having no symmetry at all, i.e. belonging to the C, symmetry point group. In
all other cases such asymmetry parameters have values between zero and
unity. Values for such asymmetry parameters are given for all topologically
distinct polyhedra having five, six, and seven vertices; all topologically distinct
eight-vertex polyhedra having at least six symmetry elements; and selected
polyhedra having from nine to twelve vertices. Effects of polyhedral distortions
on these asymmetry parameters are examined for the tetrahedron, trigonal
bipyramid, square pyramid, and octahedron. Such information theoretic asym-
metry parameters can be used to order site partitions which are incomparable
by the chirality algebra methods of Ruch and co-workers.
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1. Introduction

Symmetry is an important property of chemically significant polyhedra. In this
connection a variety of descriptors can be used to define the symmetry of
polyhedra. The most conventional polyhedral symmetry descriptor uses the sym-
metry point group [2]. Using this approach an increase in the symmetry of a
polyhedron leads to an increase in the size of its point group. A related symmetry
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descriptor uses the cycle index polynomial for all of the symmetry operations of
the polyhedron in question [3]. An increase in symmetry leads to more terms in
the cycle index polynomial.

Such symmetry descriptors may be regarded as additive since an increase in
symmetry leads to an increase in the size of the symmetry descriptor, i.e. the
point group or the cycle index polynomial. Other alternative symmetry descriptors
are subtractive. Chirality algebra [4-6] provides an example of a subtractive
symmetry descriptor since an increase in the symmetry of the system decreases
the number of chiral site partitions.

This paper discusses a new type of subtractive symmetry descriptor also based
on site partitions but having information theory [7, 8] rather than group rep-
resentation theory [4, 9] as its mathematical basis. This approach represents an
extension of work of Bonchev, Kamenski, and Kamenska [8] on the information
content of chemical structures. The approach in this paper defines information
theoretical asymmetry parameters for the vertices, edges, and faces of a polyhedron
such that these parameters are all zero for the five regular polyhedra [10] and all
unity for polyhedra having no symmetry, i.e. polyhedra having C,; point group
symmetry. These asymmetry parameters are functions solely of the site partitions
of the vertices, the centers of the faces (“faces™), and the midpoints of the edges
(““edges’) of the polyhedron in question and in this sense have a similar genesis
as the chirality functions [4, 5] arising from chirality algebra. However, the fact
that the asymmetry parameters are always fractions ranging from zero for systems
in which all sites of a given type (i.e. vertices, faces, or edges) are equivalent (i.e.
in the same orbit of the symmetry point group) to unity in systems having no
symmetry (i.e. each site of a given type is its own orbit in the C, point group)
facilitates comparison of the symmetries of systems having radically different
numbers of sites or symmetry point groups of different structures.

This paper defines such information theoretic asymmetry parameters for poly-
hedra. The values of these parameters are then examined for all polyhedra having
seven or less vertices, all eight-vertex polyhedra having at least six symmetry
elements, and selected polyhedra of chemical significance having nine through
twelve vertices. Finally, this paper examines effects on such asymmetry parameters
upon distortion of polyhedra of particular chemical importance: namely the
tetrahedron, trigonal bipyramid, square pyramid, and octahedron.

2. Method

The polyhedron asymmetry parameters discussed in this paper are functions
solely of the site partitions, where the sites are the vertices, the midpoints of the
edges, or the midpoints of the faces. The site partitions are described by symbols
of the type (a™1abz - - - a%) where a; and b, are small positive integers and a; = a;.,
{(1=i=n). In this symbol for the site partition there are b; sets of q; identical
sites. The a; identical sites correspond to an orbit of the symmetry group. Thus,
if all of the N sites of a given type (i.e. vertices, faces, or edges) are equivalent,
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the site partition is represented as (N'), abbreviated further as (N). Conversely,
if all of the N sites of a given type are different (i.e. if there is no symmetry
whatsoever), the site partition is represented as (1V). For example, the site
partitions of a trigonal bipyramid are (32) for the five vertices (i.e. three equatorial
and two axial), (6) for the six (equivalent) faces, and (63) for the nine edges (i.e.
six axial-equatorial and three equatorial-equatorial edges).

The information content of a site partition can be obtained from the following
basic equation of Shannon [7]:

fz‘-gl Di lgp,'. (1)

In Eq. (1), n is the number of orbits, p; is the probability of the site being in
orbit i, Ig is a logarithm to the base 2, and T is the average information content
per site. The probability p; is obtained from the quotient N;/ N where N is the
total number of sites and N; is the number of sites in orbit i. For example, for
the vertices of a trigonal bipyramid which correspond to a site partition (32),

T=—(3/5)1g(3/5)—(2/5) 1g (2/5) = 0.4422 +0.5288 = 0.9710. )

Note that if all of the sites are equivalent, there is only one orbit, the probability
of being in the orbit is 1 so that the average information content per site is zero,
ie. I=—lg1=0.

The maximum value of I for a collection of N sites occurs when all sites are
different, i.e. the system has no symmetry so that each site is its own orbit. For
such a fully asymmetric system

I°=—-1g(1/N). (3)

In Eq. (3) I° represents the average information content per site for a fully
asymmetric system. We can now define an asymmetry parameter A, for N sites
of type s (i.e. vertices, faces, or edges) by the quotient
A=TI/1° (4)
where I and I° are defined as in Egs. (1) and (3), respectively. For the vertices
of a trigonal bipyramid with the site partition (32)
—(3/5)1g (3/5)—(2/5)1g (2/5) 0.9710
—lg(1/5) 2.3221

A,(32) = =0.4182. (5)

Note that these asymmetry parameters depends only upon the site partitions.
Furthermore, for N sites the asymmetry parameter for the fully symmetric site
partition (N) is 0, that for the fully asymmetric site partition (1) is 1, and the
asymmetry parameters for other site partitions fall between 0 and 1.

A further feature of the asymmetry parameter A, defined in Eq. (4) is that for a
given number of sites N, A, can only have a finite number of discrete values,
since there are only a relatively small number of ways for partitioning an integer
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N into a sum of smaller integers, i.e., 5, 7, 11, 14, and 22 such partitions for
N=4,5, 6,7, and 8, respectively. For this reason, only in a small number of
exceptional cases other than the fully symmetric A(N) =0 and fully asymmetric
A(1™)=1 can asymmetry parameters be matched for partitions of different
numbers of sites. These relatively rare matching of asymmetry parameters for
small values of N include A(22)=A(422)=0.5 and A(21%) = A(2°1%) =0.75.

A feature of the chirality algebra of Ruch and co-workers [4, 5] is the recognition
of some sets of different partitions of n sites as incomparable. This occurs when
two different partitions of the same number of sites are ordered differently by
different, equaly valid, procedures. The simplest such pairs are the (3%) and (417)
partitions and the (2°) and (31%) partitions of six sites. The information theoretic
asymmetry parameters for such incomparable site partitions may be distinct
therby providing a basis for ordering site partitions which are incomparable by
the methods of Ruch and co-workers [4, 5].

3. Results

The asymmetry parameters depend only on the site partitions and are given below
for all possible partitions of four to eight sites:

A) Four Sites: A(4)=0; A(31)=0.4057; A(2*)=0.5; A(21%)=0.75; A(1%)=1.
B) Five Sites. A(5)=0; A(41)=0.3109; A(32)=0.4182; A(31%)=0.5905;
A(2°1)=0.6555; A(21°)=0.8278; A(1°)=1.

C) Six Sites: A(6)=0; A(51)=0.2515; A(42)=0.3552; A(3%)=0.3868;
A(41%) =0.4842; A(321)=0.5645; A(2°)=0.6132; A(31°)=0.6935; A(2*1%)=
0.7421; A(21*)=0.8711; A(1%)=1.

D) Seven Sites: A(7)=0; A(61)=0.2113; A(52)=0.3075; A(43)=0.3510;
A(51%)=0.4093; A(421)=0.4911; A(3°1)=0.5161; A(32%)=0.5322; A(41°)=
0.5929; A(321%) =0.6563; A(31*)=0.7580; A(2°1°)=0.7965; A(21°)=0.8378;
A1) =1.

E) Eight Sites; A(8)=0; A(71)=0.1812; A(62)=0.2704; A(53)=0.3182;
A(4%) =0.3333; A(61%) =0.3537; A(521) =0.4329; A(431) =0.4686; A(42%) =0.5;
A(51%) =0.5163; A(3%2) =0.5205; A(421%) =0.5833; A(3°1%) =0.6038; A(32°1)=
0.6352; A(41Y=A(2"=0.6667; A(321°)=0.7186; A(2°1%)=0.75; A(31°)=
0.8019; A(2°1%)=0.8333; A(21%)=0.9617; A(1®)=1.

Table 1 lists the asymmetry parameters for all topologically distinct polyhedra
having five, six and seven vertices. The properties of these polyhedra are taken
from Federico’s extensive tabulation of polyhedra having from four to eight faces
[11] by conversion of the polyhedra to their duals [12, 13]; the number of the
dual of the polyhedron in question in Federico’s table [11] is given to facilitate
comparison. The polyhedra in Table 1 are ordered by increasing values of A,
the edge asymmetry parameters, since among the three asymmetry parameters
A, A; and A, the parameter A, has the maximum number of possible valdes
because a given polyhedron has more edges than either vertices or faces by Euler’s
theorem, i.e.

v+f=e-2. (6)
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This, coupled with the intermediate dimensionality of edges (1) relative to vertices
(0) and faces (2), suggests that A, might be a better measure of polyhedral
asymmetry than either A, or Ay

The asymmetry parameters of polyhedra having the common symmetry point
groups fall into characteristic ranges. Thus the A, values for polyhedra having
the order 2 point groups C, and C, fall in the range 0.7 to 0.8 whereas those
having the order 4 point group C,, fall in the range 0.5 to 0.65. Furthermore,
since the asymmetry parameters depend only on site partitions, all three asym-
metry parameters will be identical for two or more polyhedra having identical
site partitions for their vertices, faces, and edges. Such a set of polyhedra can be
called isoentropic because of the relationship of information content to entropy
[14]. Examples of isoentropic seven-vertex polyhedra include the seven seven-
vertex polyhedra having no symmetry; a set of three seven-vertex polyhedra with
A, =0.7964, A,=0.7897, and A, =0.7749; a set of three seven-vertex polyhedra
with A, =0.7964, A,=0.7500, and A, =0.7921; and four pairs of isoentropic
seven-vertex polyhedra having A, values of 0.5578, 0.5943, 0.7506, and 0.7749
(Table 1). For a pair of dual [12, 13] polyhedra P and P’ (e.g. Federico dual
numbers #35 and #38 in Table 1) A, = A,, A, = A}, and A, = A} in accord with
the preservation of the symmetry of a polyhedron while constructing its dual.

According to Federico [11] the total number of combinatorically distinct eight-
vertex polyhedra is 257, which is an intractable number for detailed study.
However, if we exclude from consideration the large numbers of relatively
uninteresting eight-vertex polyhedra having the relatively low symmetry point
groups C,,, C,, C,, and C,, the remaining number of eight-vertex polyhedra
drops drastically to 14, a manageable number but still including the eight-vertex
polyhedra of greatest chemical interest [15]. Table 2 lists the asymmetry para-
meters of some nine- to twelve-vertex polyhedra that have arisen in chemical
contexts.

A given polyhedron has three asymmetry parameters A,, A; and A, corresponding
to the site partitions for the vertices, faces, and edges, respectively. All three of
these parameters are zero only for the five regular polyhedra [10], namely the
tetrahedron, octahedron (Table 1), cube (Table 2), icosahedron (Table 3), and
regular (pentagonal) dodecahedron. Bipyramids, prisms, antiprisms, and the dual
of the truncated tetrahedron (Table 2) have a single zero asymmetry parameter
and the semiregular cuboctahedron [16] has zero values for A, and A, but not A,

Asymmetry parameters can also be used to follow the progress of distortion of
relatively symmetrical polyhedra when symmetry elements are removed. Table 4
illustrates the effects of distortions on asymmetry parameters for four chemically
significant polyhedra, namely the tetrahedron, trigonal bipyramid, square
pyramid, and octahedron. Several different distortion pathways of the octahedron
are examined in Table 4 depending on which symmetry elements (e.g. the C;
axis or a o3, symmetry plane) are destroyed first in the distortion process. Note
that as symmetry elements are removed in these distortion processes, the values
of the asymmetry parameters increase in accord with expectations.
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